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Conditions for the existence of similar solutions for the two-dimensional and 
axisymmetric boundary layers are obtained for the steady or unsteady flow for 
purely viscous non-Newtonian fluids, where the shear stress is proportional to 
the nth power of the velocity gradient and n > 0. These conditions are shown 
to be a generalization of the similarity conditions for Newtonian fluids. In 
particular it is found that the velocity at the outer edge of the boundary layer 
must be proportional to {R(x) + A}" or exp [AR(x)] for steady flows and to 
( t  + A)", (dx + A) / ( t  + B)  or exp [At] for unsteady flows. Here x is the distance 
along the wall from the forward stagnation point, t is the time, R(x) = x for 
two-dimensional flows and R(x) = I rl+%dx for axisymmetric flows, r is the dis- 
tance from the axis to the wall, and A ,  B, d, m are constants. 

Several examples of the similar solutions are calculated analytically for both 
steady and unsteady pseudoplastic flows (n < 1). In  these solutions the velocity 
in the boundary layer tends to the outside velocity in such a manner that the 
difference tends to zero as an inverse power of the distance from the wall, whereas 
such a difference tends to zero exponentially for the corresponding flow in New- 
tonian fluids. 

1. Introduction 
Many exact solutions for the boundary-layer equations have been obtained 

for the flow for Newtonian fluids.* Some of them are similar or affine solutions, 
for which a component of the velocity has such a property that two velocity 
profiles at different co-ordinates differ only by a scale factor. In  general, it  is 
assumed that the radius of curvature of the wall is far greater than the thickness 
of the boundary layer. Similar solutions for two-dimensional and axisymmetric 
flows have been investigated thoroughly for steady flows (Hayasi 1960) and 
unsteady flows (Hayasi 1961). 

Recently some examples of the two-dimensional similar boundary layer 
have been investigated for non-Newtonian fluids, where the shear stress is 
proportional to the nth power of the velocity gradient and n > 0. Schowalter 
( 1960) considered conditions for the existence of similar solutions for steady flows. 
His treatment, however, does not cover all cases (see 46). Acrivos et al. (1960) 

* For these solutions the reader is referred to literatures by Schlichting (1960), Hayasi 
(1960, 1961, 1962), and Curle (1962). 
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calculabed numerically the velocity distributions in the boundary layer on a 
semi-infinite flat plate. Bird (1959) and Wells (19644  considered the unsteady 
boundary layer for the so-called Rayleigh problem. Wells (19646) investigated 
the conditions for the existence of similar solutions for both steady and unsteady 
flows. Unfortunately his treatment is neither self-evident nor accurate (see 
0 6). Recently it was found that there is a correlation of steady two-dimensional 
and axisymmetric boundary-layer flows, and that this suggests similar boundary 
layers exist also for steady axisymmetric flows (Hayasi 1965). Therefore, we 
wish to extend our previous analyses to non-Newtonian fluids, considering both 
two-dimensional and axisymmetric flows. 

2. Fundamental equations 
Using the co-ordinates (x, y), in which x is the distance along the wall from the 

forward stagnation point and y is the distance from the wall, the equations for 
the two-dimensional and axisymmetric boundary layers in purely viscous 
incompressible non-Newtonian fluids can be written as 

(2.1) a(ru)/ax + a(rv)/ay = 0, 

where r = 1 for two-dimensional flow and r is the distance from the axis to the 
wall for axisymmetric flow, u and v are components of the velocity in the direc- 
tions of x and y, respectively, t the time, p the density, p the pressure, and 
rYz is the shear stress in the x-direction due to the velocity gradient in the y- 
direction. The boundary conditions for u and v are 

u = v = O  a t  y = O ,  

u = U(x,t) for y-tco. 

From Bernoulli’s theorem, we have 

(2.4) 

It has been shown by Schowalter (1960) that for two-dimensional flow the shear 
stress can be expressed as 

where a and n are constants, provided that the velocity gradient is always non- 
negative, and that the Ostwald-de Waele (power-law) model is adopted. It 
can be easily shown that this equation is also valid for axisymmetric flow. 
Substituting (2.5) and (2.6) into (2.2), we obtain 

Tyz = 4au/ay)lt, (n > 01, (2.6) 

-+u-+v- = - + f - + f - n  (;;)lt-?$ - - 
au au au au au 
at ax ay at ax 

where v = alp. Equations (2.1)) (2.3)) and (2.7) are fundamental equations 
for the present problem. 
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It has been shown by Acrivos et al. (1960) that when n > 2 the boundary-layer 
flows are not of much practical interest, since Reynolds number for a power law 
non-Newtonian fluid is given by 

Re = U:-nLn/v, 

where U, and L are characteristic velocity and length, respectively, so that 
range of validity of the boundary-layer assumption appears to be rather limited. 

3. Conditions for the existence of similar solutions 

flow is similar. For this purpose we assume 
In this section we consider the conditions under which the boundary-layer 

= U(X,  t ) f ( q ) ,  (3.1) 

g(x7 t )  (3-2)  where = y/vl/(l+n) 

is a non-dimensional variable, and primes denote differentiation. Naturally g 
is considered to be proportional to the thickness of the boundary layer. The 
boundary conditions for f are 

f(0) =f'(O) = 0; f(co) = 1. (3.3) 

Integrating (2.1) with respect to y and using (3.1) and (3.3), we obtain 

Substituting (3.4) into (2.7) gives 

+--7#lf"+-- 1 a9 1 au ( 1 - f ' ) =  0. (3.5) 
9 at u at 

Hence we must have ( 3 . 6 ~ )  

(3.6b) 

( 3 . 6 ~ )  

(3.6d) 

a, b,  d,  and e being certain non-dimensional constants. Then equation (3.5) is 

' (3.7) 
reduced to 

n(fN)n-lf"' + (d + e)  f f "  + d( 1 -f2) + bqf" + a( 1 - f ') = 0. 

Differentiating ( 3 . 6 ~ )  with respect to x and use of (3.6b) and ( 3 . 6 ~ )  give, after 
some transformations, 

{ u + ( l + n ) b } d  = (1+n)aU2-ngnag/ax. (3.8) 
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Similarly we have from (3.6 b )  

( ( 2  - n) u + (1  + n) b} e + (a - 1) bd = (1 +n)  bu2-r”gnag/ax. (3-9) 

Differentiating (3.8) with respect to t and employing (3.6a), (3.6b) and (3.6c), 
we have 

If a = 0, however, from (3.8) it  is clear that bd = 0. Thus we obtain 

a{( 2 - n) aU2-ngn ag/az + (n - 1) bd} = 0. 

(2-n)aU2-gnag/ax+(n-  1)bd = 0, (3.10) 

regardless of the value of a. Use of (3.8) yields 

(2*;a+b) d = 0. (3.11) 

Eliminating ag/ax from (3.8) and (3.9), and using (3.11), we have 

( z a + b ) a e  = 0. (3.12) 

From these relations we can conclude, after some simple considerations, that 
there are only the following possibilities. 

(1) The case a = 0 

As mentioned above, we have bd = 0. 

(1.1.1) The case d = 0 

(1.1) The case b = 0. This case corresponds to the steady flow. 

1 U = const., 

g = r-1(( I + n) eUn-ZR(x) + A]l/(l+fi), 

nf”’ + ef(f”)2-n = 0, 

where R ( x )  = rl+ndx and A is an integration constant. s 
(1.1.2) The cased $. 0 

Eliminating g from ( 3 . 6 ~ )  and (3.6d) gives 
TJ(l/m)-ld u / d x  = A drl+n, 

whereA+Oandl /m= ( l+n) (e /d )+2-n;  

n(f”)n-lf” + (d + e)ff” + d( 1 - f ’ 2 )  = 0. 

(1.1.2.1) The c m e  l /m = 0 

e = - ( 2 - n ) d / ( l + n ) ,  U = Bexp[AdR(x)],  

( 3 . 1 3 ~ )  

(3.13b) 

(3.14) 

1 

where B is another integration constant. 

(f.1.2.2) Thecasel/m + 0 

U = m-m{AdR(x)  + B}m, 
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(1.2) The case b =/= 0 

(3.17 a )  

(3.17 b )  

1 
d = 0,  

U = const., 

g = ((1 +n)eUn-2x+(1 +n)bUfi-lt+A)ll(l+n), 

r = const., 

nf” + (ef + by)  (f”)2-n = 0. 

The form of the wall allowing such similar solutions must be a cylinder. 

( 2 )  The case a $: 0 

( I + n a + b ) d  2 - n  = ( c n a + b ) e  2 - n  = 0. 

(2.1) Thecase ( 2 - n ) a + ( l + n ) b  = 0, 

I b = (n-Z)a/( l+n) ,  U = - (dx+B)/(at+A),  
g = ( d x  + B)  (fi-Nl+@( - at - A)(Z-fi)/(l+S, 

2 - n  
l+n 

n(f”)%-’f’” + (d  + e )  ff” + d( 1 - f ’2) - __ aqf” + a( 1 -f) = 0. 

(2.1.1) Thecased = 0 
r = C exp [ez/B], 

where C is another integration constant. 

(2.1.2) The cuse d $: 0 
l - -n  e 

r = C ( d x  + B)l+n+Z. 

(2.2) Thecase ( 2 - n ) a + ( l + n ) b  =j= 0, 

d = e = O ,  r = const., v = 0, 

n(fn),-,f” + byf” + a( 1 - f ’) = 0. 

(2.2.1) Thecuseq  = ( l + n ) ( b / a ) + l - n  = 0 

U = Bexp [at/A], g = A1l(l+n)Bb/a exp [bt /A].  

(2.2.2) T h e  case q $: 0 

u = A{q(at + B ) p ,  g = A(fi-l)I(l+fi) (q(at + B))bW 

(3.18 a )  

(3.18b) 

(3.18 c )  

(3.18d) 

( 3 . 1 9 ~ )  

( 3.1 9 b)  

(3.20) 

(3.21) 

In these equations constants a, b,  d ,  and e might not always be able to take 
arbitrary values for a solution or solutions satisfying the boundary conditions 
to exist. For example, if we assume e = 0 in (3.13 b ) ,  it is clear that the required 
solution does not exist. 

It should be noted for two-dimensional flows that, when g = g ( t ) ,  we have 

aauiax2 = f t  awlax2 = o 
except for the case (1.1.2.1), so that equation (3.7) is the same as what should be 
reduced from the Navier-Stokes equation. 
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4. An example of the steady similar boundary layer 
In  this section we show an example of the steady similar boundary layer. For 

this purpose we choose the case (1.1.2.1) of $3, where a = b = 0, and assume that 
n is equal to 4 and d > 0. Then we have d + e  = 0, so that equation (3.14) is 
reduced to 

where $25 = df/dv = u/U and primes denote differentiation with respect to 

($25')+" - ($252- 1) #' = 0, (4.1) 

( = (2437.  

Boundary conditions are given by 

$ ( O )  = 0, #(a) = 1. 
1 4 

0.8 

0.6 
u - 
U 

0.4 

0.2 

C 1 2 3 4 5 6 
E 

FIGURE 1. Steady similar velocity profile when a = b = d + e  = 0, d > 0. 
(The profile for n = 1 is given by Hartree 1937.) 

Equation (4.1) can be integrated as 

where A is an integration constant and A = 2, since $25 -+ 1 and $25' -+ 0 when 
( -+ co. We can integrate this equation again, getting 

#' = 2-3(93 - 3$25 +A)$,  
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where B is another integration constant. Since # ( O )  = 0 ,  we have B = 24. Thus 
we obtain 

Therefore U - u tends to zero as 7-3 when 7 -+ 00. Such a solution for which U - u 
tends to zero in the order of negative powers of 7 as 7-+- 00 has been called a 'weak 
solution' (Hayasi 1961). 

From (3.4) and (3.15)' we have 

(4.4) 

The velocity distribution u / U  is presented in figure 1. This problem for n = 1 
was treated by Goldstein (1939), and Hartree (1937)" had given the 'medium 
solution' for which U - u tends to zero as exp [-TI. This solution is also included 
in the figure. It is noted that c = (d/2)47 for n = 1. 

5. Examples of the unsteady similar boundary layer 
In  this section we show examples of the unsteady similar boundary layer. 

First we consider the case (1.2) of $3, where a = d = 0, and assume e = 0 and 
b > 0. Then equation (3.17b) reduces to 

$1' + zt(q5')z-n = 0, (5.1) 

where $ = d f / d y  = ulU as before, and primes denote differentiation with 
respect to  5 = (b/2n)l/(l+n)q. Boundary conditions are given by (4.2). From 
(3.4) and ( 3 . 1 7 ~ ~ )  it  is clear that v = 0. Equation (5.1) is integrated once to give 

$' = ( A  + (1 - n) &-2]-U-n) (5.2) 

for n + 1. Solutions of this equation have been calculated numerically by Wells 
( 1 9 6 4 ~ )  for n = +, a, +, 8 and g. 

This case corresponds to the Rayleigh problem in which relative motion of a 
fluid and of an immersed solid body started impulsively from rest is considered. 
Using a co-ordinate system fixed in the fluid, Bird (1959) presented analytical 
solutions. Using the co-ordinate system fixed to the wall, his results are re- 
written as follows: 

* There is 8 misprint in his table. The numerical value for 4 (0.8) should be reed as 
0.7958 instead of 0.7858. 
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For Newtonian fluids (n = l ) ,  Blasius (1908) obtained the solution 

9 = erf 5 = 227-3 exp ( - 62) dc. SD’ 
For n > 1, it  seems to be impossible to obtain the solution of (5 .2)  satisfying 
(4.2). For example, if we put n = g, the general solution of (5.2) is 

q5 = xkc5-QA(3+A2c+B, 

and a boundary condition q5(co) = 1 cannot be satisfied. 
From the analytical solutions, it can be easily shown that U - u tends to zero 

as 7-“ for n < 1, where m = 2 , 3 , 5 ,  and 11 for n = Q, 4, 8, and $, respectively. 
Thus the solutions for pseudoplastic flow ( n  < 1 )  are weak solutions. It is well 
known that the Blasius solution for Newtonian flow (n = 1) is a ‘strong solution ’ 
which tends to zero as exp ( - q2) when 7 -+ co. 

Next we consider the case (2.2.2) of $ 3 ,  where d = e = 0, and assume b = 0 
and a > 0. Then equation (3.19b) reduces to 

4( 1 + n) (q5’)%-1q5’’ - q5 + 1 = 0, (5.3) 

where primes denote differentiation with respect to 

[ = {( 1 + n )  ~ / ( 2 n ) } l l ( ~ + 9 .  

Integration of this equation gives 

(q5‘)’+” = $’- 2 4  + A ,  

where an integration constant A is determined as unity, since q5’ + 0 when 
9 -+ 1. Integrating once more gives 

{( 1 +n)/( l  -n)]  (1 - q5)-(1-n)l(1+n) = [+ B 

for n += 1. Since $ ( O )  = : O ,  we obtainB = ( l + n ) / ( l - n ) .  Thus weget 

Clearly we must have n < 1 for this solution to tend to unity when 5 -+ co. 
For a, Newtonian fluid (n = l ) ,  the ‘medium’ solution of equation (5.3) has been 
given by Schuh (1955) as 

It is easy to show that equation (5.5) is the limiting form of equation (5.4) 
when n -+ 1. Velocity distributions q5 = u /U are presented in figure 2 for n = 8 ,  
+, Q, Q and 1. 

It should be noted that for both cases there is a weak solution in which U - u 
tends to zero from above as ~,~-(l+@/(l-n) for 0 < n < 1. 

It is noted that for the two-dimensional case equations (5.2) and (5.3) are 
the same as those to which the Navier-Stokes equation should be reduced, since 
g = g ( t )  in these cases. 

q5 = l-exp[-[]. (5.5) 
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0 1 2  3 4 5 6 7 8 9 10 

E 
FIGURE 2. Unsteady similar velocity profile when b = d = e = 0, a > 0. 

(The profile for 71, = 1 is given by Schuh 1955.) 

6. Discussion 
For the steady two-dimensional flow, Schowalter ( 1960) obtained conditions 

for the existence of similar solutions. He classifies flows into the following three 
types: 

( I )  thecase ( 2 - n ) d + ( l + n ) e  + 0 and d + e  + 0; 

(2) the case ( 2 - n ) d + ( l + n ) e  $: 0 and d + e  = 0; 

and (3) the case ( 2 - n ) d + ( l + n ) e  = 0 and d + e  $: 0. 

It is evident that there is another case where ( 2  - n) d + (1 + n) e = 0 and d + e = 0. 
In  this case we have n = 9, and this was considered in detail in $4. 

For the steady and unsteady two-dimensional flows, Wells (19643) derived 
conditions for the existence of similar solutions. His treatment is not self-evident; 
for example, it is not clear whether conditions (3.10), (3.11), and (3.12) are 
taken into account. Moreover there are nearly one hundred misprints and some 
of the final results are also erroneous. For example, for the case (1.1.2.1) of 
$ 3  of the present paper, using (3.15), equation (3.14) is reduced to 

This equation corresponds to his equation (31) where he writes 4 in place of 
(2n - 1)/( 1 + n). Clearly such simplification cannot be justified for non-New- 
tonian fluid (n =k 1). 

It may be interesting to note that the investigation of the asymptotic behaviour 
of the similar solutions for Newtonian fluids (Hayasi 1961) can be easily extended 
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so as to include the asymptotic behaviour for non-Newtonian fluids. The results 
are as follows. (1) If b + d + e  = -(a+2d) 4 0, or if b + e  4 0 and a = d = 0, 
there may be a ‘weak ’ solution or solutions for 0 < n < 1 and (b  + d + e)ll(l-” > 0, 
and there is no required solution for 1 < nor for 0 < n < 1 and (b  + d + e)lI(l4) < 0; 
(2) If b = d + e = 0 and a + 2d =+ 0, there may be a ‘weak ’ solution or solutions 
for0 < n < 1 anda+2d > 0, andthereisno solutionfor 1 < n or for 0 < n < 1 
and a+ 2d < 0; (3) For the weak solution U - u  tends to zero from above as 
q-(l+n)/(l-n). Thus for such cases solutions for non-Newtonian fluids exist only for 
pseudoplastic flows (n < 1). These results agree completely with the analytic 
solutions obtained in $04 and 5 .  

For the flow past a semi-infinite flat plate at  zero angle of attack or a hollow 
circular cylinder whose axis is parallel to the stream, we have U = const. so 
that the thickness of the boundary layer is given by the second equation of 
(3.13a), where e > 0. Here we can make A = 0 by suitable choice of the co- 
ordinates. Equation (3.13 b)  reduces to 

(6.1) 

where P = {( 1 + n) e}l’(l+n)f and primes denote differentiation with respect to 

n(n + 1) P”’ + P(F”)2-~ = 0, 

= {( 1 i- n) e]l/(l+n)q. Boundary conditions are 

F(0)  = P’(0) = 0; P’(00) = 1. (6.2) 

As is well known Blasius (1908) calculated the solution for a Newtonian fluid 
(n = 1). Acrivos et al. (1960) obtained solutions for n = 0.1, 0.2, 0-5, and 1.5 
by numerical calculation, and found that there is no solution for n 2 2. From 
the results in the previous paragraph, however, for a = b = d = 0 and e > 0 
there may be a weak solution or solutions for 0 < n < 1 but there is no solution 
for 1 < n. It may be suspected that their solution for n = 1.5 does not satisfy 
a boundary condition P‘(o0) = 1.” 

So for the power-law assumption (2.6) has been used, although this is valid 
only if the velocity gradient au/@ is relatively large. Now it is clear that au/ay 
is small near the outer edge of the boundary layer, so that the fundamental 
equation (2.7) is no longer valid in this region. This may be the reason why there 
is no solution satisfying the boundary condition at y = CQ for dilatant flows 
(n > 1) and there are only weak solutions for pseudoplastic flows (n < 1). 
Acrivos et al. (1960) propose to replace the boundary conditions (3.3) by other 
boundary conditions 

f ( 0 )  = f ’ ( O )  = 0, f ’ (C) = 1, f”(C)  = 0, (6.3) 

where C is a constant to be determined by these equations, provided the former 
cannot be satisfied. Solutions of (5.4) for n > 1 satisfying (6.3) are included in 
figure 2 as broken lines, although the range of validity of solutions for n > 2 
is rather limited. From this figure it seems to be plausible to use (6.3) for n > 1,  
though further investigation is needed. 

* After the completion of this work the author was informed from Professor Acrivos 
that this is the case. 
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